Logarithmic Sobolev Inequalities for Infinite Dimensional Hörmander Type Generators on the Heisenberg Group

نویسندگان

  • J. INGLIS
  • I. PAPAGEORGIOU
چکیده

Abstract. The Heisenberg group is one of the simplest sub-Riemannian settings in which we can define non-elliptic Hörmander type generators. We can then consider coercive inequalities associated to such generators. We prove that a certain class of nontrivial Gibbs measures with quadratic interaction potential on an infinite product of Heisenberg groups satisfy logarithmic Sobolev inequalities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logarithmic Sobolev Trace Inequality

A logarithmic Sobolev trace inequality is derived. Bounds on the best constant for this inequality from above and below are investigated using the sharp Sobolev inequality and the sharp logarithmic Sobolev inequality. Logarithmic Sobolev inequalities capture the spirit of classical Sobolev inequalities with the logarithm function replacing powers, and they can be considered as limiting cases of...

متن کامل

Global Poincaré Inequalities on the Heisenberg Group and Applications

Let f be in the localized nonisotropic Sobolev space W 1,p loc (H ) on the n-dimensional Heisenberg group H = C × R, where 1 ≤ p < Q and Q = 2n + 2 is the homogeneous dimension of H. Suppose that the subelliptic gradient is gloablly L integrable, i.e., Hn |∇Hnf |pdu is finite. We prove a Poincaré inequality for f on the entire space H. Using this inequality we prove that the function f subtract...

متن کامل

Logarithmic Harnack inequalities∗

Logarithmic Sobolev inequalities first arose in the analysis of elliptic differential operators in infinite dimensions. Many developments and applications can be found in several survey papers [1, 9, 12]. Recently, Diaconis and Saloff-Coste [8] considered logarithmic Sobolev inequalities for Markov chains. The lower bounds for log-Sobolev constants can be used to improve convergence bounds for ...

متن کامل

A Poincaré Inequality on Loop Spaces

We investigate properties of measures in infinite dimensional spaces in terms of Poincaré inequalities. A Poincaré inequality states that the L2 variance of an admissible function is controlled by the homogeneous H1 norm. In the case of Loop spaces, it was observed by L. Gross [17] that the homogeneous H1 norm alone may not control the L2 norm and a potential term involving the end value of the...

متن کامل

Logarithmic Sobolev Inequalities and the Information Theory

In this paper we present an overview on logarithmic Sobolev inequalities. These inequalities have become a subject of intense research activity during the past years, from analysis and geometry in finite and infinite dimension, to probability and statistical mechanics, and of course many others developments and applications are expected. We have divided this paper into three parts. The first pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009